Difference between revisions of "Software"
(Replaced content with "preliminary python code") |
|||
Line 1: | Line 1: | ||
− | preliminary python code | + | processing code for the conversion from the image file to the pen tip path |
+ | |||
+ | import toxi.geom.*; | ||
+ | |||
+ | // tsp variables | ||
+ | int particleRouteLength; | ||
+ | Vec2D[] particles; | ||
+ | int[] particleRoute; | ||
+ | int maxParticles; | ||
+ | |||
+ | // image variable | ||
+ | PImage img; | ||
+ | |||
+ | float millisLastFrame = 0; | ||
+ | float frameTime = 0; | ||
+ | // scale of the drawing | ||
+ | float s = 2.0; | ||
+ | |||
+ | void setup() { | ||
+ | |||
+ | maxParticles = 15000; | ||
+ | //img = loadImage("lenna-lg_BW_loRes.png"); | ||
+ | //img = loadImage("test.png"); | ||
+ | img = loadImage("lenna_BW_loRes2.png"); | ||
+ | size(img.width*(int)s, img.height*(int)s); | ||
+ | //size(400, 600); | ||
+ | // count black pixels | ||
+ | int i; | ||
+ | maxParticles = 0; | ||
+ | for ( int x = 0; x < img.width; x++ ) { | ||
+ | for ( int y = 0; y < img.height; y++ ) { | ||
+ | i = ( ( y * img.width ) + x ); // getting pixel index | ||
+ | if ( img.pixels[i] == color( 0, 0, 0 ) ) { | ||
+ | maxParticles++; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | |||
+ | println("black dots: " + maxParticles); | ||
+ | // allocate and fill points vector | ||
+ | particles = new Vec2D[maxParticles]; | ||
+ | i = 0; | ||
+ | int j = 0; | ||
+ | for ( int x = 0; x < img.width; x++ ) { | ||
+ | for ( int y = 0; y < img.height; y++ ) { | ||
+ | i = ( ( y * img.width ) + x ); | ||
+ | if ( img.pixels[i] == color( 0, 0, 0 ) ) { | ||
+ | Vec2D p1 = new Vec2D(x, y); | ||
+ | particles[j] = p1; | ||
+ | j++; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | millisLastFrame = millis(); | ||
+ | initPath(); // initialize path (NN heuristic) | ||
+ | for (int l = 0; l < 5; l++ ) { | ||
+ | // optimize path with 2-opt heuristic | ||
+ | for (int k = 0; k < 5000; k++ ) optimizePath(); | ||
+ | // profiling ... | ||
+ | frameTime = (millis() - millisLastFrame)/1000; | ||
+ | millisLastFrame = millis(); | ||
+ | println("Frame time: " + millisLastFrame); | ||
+ | } | ||
+ | noLoop(); | ||
+ | } | ||
+ | |||
+ | void initPath() | ||
+ | { | ||
+ | int temp; | ||
+ | println("initializing path (NN)"); | ||
+ | Vec2D p1, p2; | ||
+ | particleRouteLength = maxParticles; | ||
+ | // array of free ramaining particles to be queried | ||
+ | boolean freeParticles[] = new boolean[maxParticles]; | ||
+ | particleRoute = new int[particleRouteLength]; | ||
+ | int closestParticle; | ||
+ | float distMin; | ||
+ | p1 = particles[0]; | ||
+ | freeParticles[0] = true; | ||
+ | particleRoute[0] = 0; | ||
+ | // Nearest neighbor ("Simple, Greedy") algorithm path optimization: | ||
+ | int i = 0, j; | ||
+ | float dx, dy, distance; | ||
+ | while (i < particleRouteLength) { | ||
+ | distMin = Float.MAX_VALUE; // re-initialize mimimun distance value | ||
+ | closestParticle = 0; // re-initialize closest particle | ||
+ | for (j = 0; j < particleRouteLength; j++) { | ||
+ | if (freeParticles[j] == false) { | ||
+ | p2 = particles[j]; // get next particle to calculate distance | ||
+ | dx = p1.x - p2.x; | ||
+ | dy = p1.y - p2.y; | ||
+ | distance = (float) (dx*dx+dy*dy); // Only looking for closest; do not need sqrt factor! | ||
+ | if (distance < distMin) { | ||
+ | closestParticle = j; // update the closest particle index | ||
+ | distMin = distance; // update the minimum distance value | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | freeParticles[closestParticle] = true; // remove the particle from the ones to be queried | ||
+ | particleRoute[i] = closestParticle; //set the next particle in the path | ||
+ | i++; // increment while counter | ||
+ | } | ||
+ | // Initial routing is complete | ||
+ | frameTime = (millis() - millisLastFrame)/1000; | ||
+ | millisLastFrame = millis(); | ||
+ | println("Frame time: " + millisLastFrame); | ||
+ | } | ||
+ | |||
+ | void optimizePath() { | ||
+ | // 2-opt heuristic optimization: | ||
+ | // Identify a pair of edges that would become shorter by reversing part of the tour. | ||
+ | int temp; | ||
+ | //println("optimizing path (2-opt) " ); | ||
+ | for (int i = 0; i < 5000; ++i) { // 1000 tests per frame; you can edit this number. | ||
+ | int indexA = floor(random(particleRouteLength - 1)); | ||
+ | int indexB = floor(random(particleRouteLength - 1)); | ||
+ | if (Math.abs(indexA - indexB) < 2) | ||
+ | continue; | ||
+ | if (indexB < indexA) { // swap A, B. | ||
+ | temp = indexB; | ||
+ | indexB = indexA; | ||
+ | indexA = temp; | ||
+ | } | ||
+ | |||
+ | Vec2D a0 = particles[particleRoute[indexA]]; | ||
+ | Vec2D a1 = particles[particleRoute[indexA + 1]]; | ||
+ | Vec2D b0 = particles[particleRoute[indexB]]; | ||
+ | Vec2D b1 = particles[particleRoute[indexB + 1]]; | ||
+ | |||
+ | // Original distance: | ||
+ | float dx = a0.x - a1.x; | ||
+ | float dy = a0.y - a1.y; | ||
+ | float distance = (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor! | ||
+ | dx = b0.x - b1.x; | ||
+ | dy = b0.y - b1.y; | ||
+ | distance += (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor! | ||
+ | // Possible shorter distance? | ||
+ | dx = a0.x - b0.x; | ||
+ | dy = a0.y - b0.y; | ||
+ | float distance2 = (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor! | ||
+ | dx = a1.x - b1.x; | ||
+ | dy = a1.y - b1.y; | ||
+ | distance2 += (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor! | ||
+ | |||
+ | if (distance2 < distance) { // Reverse tour between a1 and b0. | ||
+ | int indexhigh = indexB; | ||
+ | int indexlow = indexA + 1; | ||
+ | while (indexhigh > indexlow) { | ||
+ | temp = particleRoute[indexlow]; | ||
+ | particleRoute[indexlow] = particleRoute[indexhigh]; | ||
+ | particleRoute[indexhigh] = temp; | ||
+ | indexhigh--; | ||
+ | indexlow++; | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | |||
+ | |||
+ | void draw() { | ||
+ | //image(img, 0, 0); | ||
+ | image(img, width*s, height*s); | ||
+ | int i = 0; | ||
+ | stroke(128, 128, 255); // Stroke color (blue) | ||
+ | strokeWeight (.5); // stroke weight | ||
+ | println("in draw, n.part : " + particleRouteLength); | ||
+ | |||
+ | // loop the particles drawing a line between successive points | ||
+ | for ( i = 0; i < (particleRouteLength - 1); ++i) { | ||
+ | Vec2D p1 = particles[particleRoute[i]]; | ||
+ | Vec2D p2 = particles[particleRoute[i + 1]]; | ||
+ | line(p1.x*s, p1.y*s, p2.x*s, p2.y*s); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | |||
+ | preliminary python code for the low level controller | ||
+ | |||
+ | from time import sleep | ||
+ | from math import pi | ||
+ | import RPi.GPIO as GPIO | ||
+ | |||
+ | # systems parameters | ||
+ | r_p = 18.0 #............... pulley radius [mm] | ||
+ | d_p = 1500.0 #............. pulley distance [mm] | ||
+ | d_p05 = dp * 0.5 #......... half pulley distance [mm] | ||
+ | s_a = 3.5 * (2*pi/360) #... step angle [rad] | ||
+ | |||
+ | # drawing parameters | ||
+ | s = 2.0 #.................. drawing scale [-] | ||
+ | |||
+ | # initialize output pins | ||
+ | GPIO.setup(13, GPIO.OUT) | ||
+ | #GPIO.setup(15, GPIO.OUT) | ||
+ | #GPIO.setup(16, GPIO.OUT) | ||
+ | #GPIO.setup(15, GPIO.OUT) | ||
+ | #GPIO.setup(16, GPIO.OUT) | ||
+ | #GPIO.setup(15, GPIO.OUT) | ||
+ | #GPIO.setup(16, GPIO.OUT) | ||
+ | #GPIO.setup(15, GPIO.OUT) | ||
+ | |||
+ | |||
+ | pos = [240, 240] #.... set initial position vector (x,Y) | ||
+ | len_curr = getStringsLen(pos_init, d_p05, s) # get initial string | ||
+ | |||
+ | for i in list | ||
+ | pos_next = path[i] | ||
+ | len_next = getStringsLen(pos_next, d_p05, s) | ||
+ | dl = len_next - len_curr | ||
+ | ds = dl/s_a | ||
+ | |||
+ | |||
+ | def getStringsLen(pos_xy, halfPullDist, scale) | ||
+ | x2 = (pos_xy[0] * scale)**2 | ||
+ | x2b2 = (halfPullDist - pos_xy[0] * scale)**2 | ||
+ | y2 = (pos_xy[1] * scale)**2 | ||
+ | return [sqrt(x2+y2) , sqrt(x2b2+y2)] |
Revision as of 17:32, 12 February 2013
processing code for the conversion from the image file to the pen tip path
import toxi.geom.*;
// tsp variables int particleRouteLength; Vec2D[] particles; int[] particleRoute; int maxParticles;
// image variable PImage img;
float millisLastFrame = 0; float frameTime = 0; // scale of the drawing float s = 2.0;
void setup() {
maxParticles = 15000; //img = loadImage("lenna-lg_BW_loRes.png"); //img = loadImage("test.png"); img = loadImage("lenna_BW_loRes2.png"); size(img.width*(int)s, img.height*(int)s); //size(400, 600); // count black pixels int i; maxParticles = 0; for ( int x = 0; x < img.width; x++ ) { for ( int y = 0; y < img.height; y++ ) { i = ( ( y * img.width ) + x ); // getting pixel index if ( img.pixels[i] == color( 0, 0, 0 ) ) { maxParticles++; } } }
println("black dots: " + maxParticles); // allocate and fill points vector particles = new Vec2D[maxParticles]; i = 0; int j = 0; for ( int x = 0; x < img.width; x++ ) { for ( int y = 0; y < img.height; y++ ) { i = ( ( y * img.width ) + x ); if ( img.pixels[i] == color( 0, 0, 0 ) ) { Vec2D p1 = new Vec2D(x, y); particles[j] = p1; j++; } } } millisLastFrame = millis(); initPath(); // initialize path (NN heuristic) for (int l = 0; l < 5; l++ ) { // optimize path with 2-opt heuristic for (int k = 0; k < 5000; k++ ) optimizePath(); // profiling ... frameTime = (millis() - millisLastFrame)/1000; millisLastFrame = millis(); println("Frame time: " + millisLastFrame); } noLoop();
}
void initPath() {
int temp; println("initializing path (NN)"); Vec2D p1, p2; particleRouteLength = maxParticles; // array of free ramaining particles to be queried boolean freeParticles[] = new boolean[maxParticles]; particleRoute = new int[particleRouteLength]; int closestParticle; float distMin; p1 = particles[0]; freeParticles[0] = true; particleRoute[0] = 0; // Nearest neighbor ("Simple, Greedy") algorithm path optimization: int i = 0, j; float dx, dy, distance; while (i < particleRouteLength) { distMin = Float.MAX_VALUE; // re-initialize mimimun distance value closestParticle = 0; // re-initialize closest particle for (j = 0; j < particleRouteLength; j++) { if (freeParticles[j] == false) { p2 = particles[j]; // get next particle to calculate distance dx = p1.x - p2.x; dy = p1.y - p2.y; distance = (float) (dx*dx+dy*dy); // Only looking for closest; do not need sqrt factor! if (distance < distMin) { closestParticle = j; // update the closest particle index distMin = distance; // update the minimum distance value } } } freeParticles[closestParticle] = true; // remove the particle from the ones to be queried particleRoute[i] = closestParticle; //set the next particle in the path i++; // increment while counter } // Initial routing is complete frameTime = (millis() - millisLastFrame)/1000; millisLastFrame = millis(); println("Frame time: " + millisLastFrame);
}
void optimizePath() {
// 2-opt heuristic optimization: // Identify a pair of edges that would become shorter by reversing part of the tour. int temp; //println("optimizing path (2-opt) " ); for (int i = 0; i < 5000; ++i) { // 1000 tests per frame; you can edit this number. int indexA = floor(random(particleRouteLength - 1)); int indexB = floor(random(particleRouteLength - 1)); if (Math.abs(indexA - indexB) < 2) continue; if (indexB < indexA) { // swap A, B. temp = indexB; indexB = indexA; indexA = temp; }
Vec2D a0 = particles[particleRoute[indexA]]; Vec2D a1 = particles[particleRoute[indexA + 1]]; Vec2D b0 = particles[particleRoute[indexB]]; Vec2D b1 = particles[particleRoute[indexB + 1]];
// Original distance: float dx = a0.x - a1.x; float dy = a0.y - a1.y; float distance = (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor! dx = b0.x - b1.x; dy = b0.y - b1.y; distance += (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor! // Possible shorter distance? dx = a0.x - b0.x; dy = a0.y - b0.y; float distance2 = (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor! dx = a1.x - b1.x; dy = a1.y - b1.y; distance2 += (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor!
if (distance2 < distance) { // Reverse tour between a1 and b0. int indexhigh = indexB; int indexlow = indexA + 1; while (indexhigh > indexlow) { temp = particleRoute[indexlow]; particleRoute[indexlow] = particleRoute[indexhigh]; particleRoute[indexhigh] = temp; indexhigh--; indexlow++; } } }
}
void draw() {
//image(img, 0, 0); image(img, width*s, height*s); int i = 0; stroke(128, 128, 255); // Stroke color (blue) strokeWeight (.5); // stroke weight println("in draw, n.part : " + particleRouteLength);
// loop the particles drawing a line between successive points for ( i = 0; i < (particleRouteLength - 1); ++i) { Vec2D p1 = particles[particleRoute[i]]; Vec2D p2 = particles[particleRoute[i + 1]]; line(p1.x*s, p1.y*s, p2.x*s, p2.y*s); }
}
preliminary python code for the low level controller
from time import sleep from math import pi import RPi.GPIO as GPIO
- systems parameters
r_p = 18.0 #............... pulley radius [mm] d_p = 1500.0 #............. pulley distance [mm] d_p05 = dp * 0.5 #......... half pulley distance [mm] s_a = 3.5 * (2*pi/360) #... step angle [rad]
- drawing parameters
s = 2.0 #.................. drawing scale [-]
- initialize output pins
GPIO.setup(13, GPIO.OUT)
- GPIO.setup(15, GPIO.OUT)
- GPIO.setup(16, GPIO.OUT)
- GPIO.setup(15, GPIO.OUT)
- GPIO.setup(16, GPIO.OUT)
- GPIO.setup(15, GPIO.OUT)
- GPIO.setup(16, GPIO.OUT)
- GPIO.setup(15, GPIO.OUT)
pos = [240, 240] #.... set initial position vector (x,Y)
len_curr = getStringsLen(pos_init, d_p05, s) # get initial string
for i in list pos_next = path[i] len_next = getStringsLen(pos_next, d_p05, s) dl = len_next - len_curr ds = dl/s_a
def getStringsLen(pos_xy, halfPullDist, scale)
x2 = (pos_xy[0] * scale)**2
x2b2 = (halfPullDist - pos_xy[0] * scale)**2
y2 = (pos_xy[1] * scale)**2
return [sqrt(x2+y2) , sqrt(x2b2+y2)]