Software
Image pre-processing
assuming GIMP:
- Push up the contrast
- Image ==> Mode ==> Indexed
- B/W (1 bit palette)
- Dithering: Floyd-Steinberg
Processing code
for the conversion from the image file to the pen tip path (Last update: Thu 14 Feb 2013, 19.39)
Step by Step:
- Install Processing
- Download and Install toxiclib
- Create a sketch with the code below:
<source lang="javascript"> import toxi.geom.*;
// tsp variables int particleRouteLength; Vec2D[] particles; int[] particleRoute; int maxParticles;
// image variable PImage img;
float millisLastFrame = 0; float frameTime = 0; // scale of the drawing float s = 2.0;
void setup() {
maxParticles = 15000; //img = loadImage("lenna-lg_BW_loRes.png"); img = loadImage("test.png"); //img = loadImage("test_masa.png"); //img = loadImage("lenna_BW_loRes2.png"); size(img.width*(int)s, img.height*(int)s); //size(400, 600); // count black pixels int i; maxParticles = 0; for ( int x = 0; x < img.width; x++ ) { for ( int y = 0; y < img.height; y++ ) { i = ( ( y * img.width ) + x ); // getting pixel index if ( img.pixels[i] == color( 0, 0, 0 ) ) { maxParticles++; } } }
println("black dots: " + maxParticles); // allocate and fill points vector particles = new Vec2D[maxParticles]; i = 0; int j = 0; for ( int x = 0; x < img.width; x++ ) { for ( int y = 0; y < img.height; y++ ) { i = ( ( y * img.width ) + x ); if ( img.pixels[i] == color( 0, 0, 0 ) ) { Vec2D p1 = new Vec2D(x, y); particles[j] = p1; j++; } } } millisLastFrame = millis(); initPath(); // initialize path (NN heuristic) for (int l = 0; l < 5; l++ ) { // optimize path with 2-opt heuristic for (int k = 0; k < 1000; k++ ) optimizePath(); // profiling ... frameTime = (millis() - millisLastFrame)/1000; millisLastFrame = millis(); println("Frame time: " + millisLastFrame); } noLoop();
}
void initPath() {
int temp; println("initializing path (NN)"); Vec2D p1, p2; particleRouteLength = maxParticles; // array of free ramaining particles to be queried boolean freeParticles[] = new boolean[maxParticles]; particleRoute = new int[particleRouteLength]; int closestParticle; float distMin; p1 = particles[0]; freeParticles[0] = true; particleRoute[0] = 0; // Nearest neighbor ("Simple, Greedy") algorithm path optimization: int i = 0, j; float dx, dy, distance; while (i < particleRouteLength) { distMin = Float.MAX_VALUE; // re-initialize mimimun distance value closestParticle = 0; // re-initialize closest particle for (j = 0; j < particleRouteLength; j++) { if (freeParticles[j] == false) { p2 = particles[j]; // get next particle to calculate distance dx = p1.x - p2.x; dy = p1.y - p2.y; distance = (float) (dx*dx+dy*dy); // Only looking for closest; do not need sqrt factor! if (distance < distMin) { closestParticle = j; // update the closest particle index distMin = distance; // update the minimum distance value } } } freeParticles[closestParticle] = true; // remove the particle from the ones to be queried particleRoute[i] = closestParticle; //set the next particle in the path i++; // increment while counter } // Initial routing is complete frameTime = (millis() - millisLastFrame)/1000; millisLastFrame = millis(); println("Frame time: " + millisLastFrame);
}
void optimizePath() {
// 2-opt heuristic optimization: // Identify a pair of edges that would become shorter by reversing part of the tour. int temp; //println("optimizing path (2-opt) " ); for (int i = 0; i < 5000; ++i) { // 1000 tests per frame; you can edit this number. int indexA = floor(random(particleRouteLength - 1)); int indexB = floor(random(particleRouteLength - 1)); if (Math.abs(indexA - indexB) < 2) continue; if (indexB < indexA) { // swap A, B. temp = indexB; indexB = indexA; indexA = temp; }
Vec2D a0 = particles[particleRoute[indexA]]; Vec2D a1 = particles[particleRoute[indexA + 1]]; Vec2D b0 = particles[particleRoute[indexB]]; Vec2D b1 = particles[particleRoute[indexB + 1]];
// Original distance: float dx = a0.x - a1.x; float dy = a0.y - a1.y; float distance = (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor! dx = b0.x - b1.x; dy = b0.y - b1.y; distance += (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor! // Possible shorter distance? dx = a0.x - b0.x; dy = a0.y - b0.y; float distance2 = (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor! dx = a1.x - b1.x; dy = a1.y - b1.y; distance2 += (float) (dx*dx+dy*dy); // only a comparison; do not need sqrt factor!
if (distance2 < distance) { // Reverse tour between a1 and b0. int indexhigh = indexB; int indexlow = indexA + 1; while (indexhigh > indexlow) { temp = particleRoute[indexlow]; particleRoute[indexlow] = particleRoute[indexhigh]; particleRoute[indexhigh] = temp; indexhigh--; indexlow++; } } }
}
void draw() {
//image(img, 0, 0); image(img, width*s, height*s); int i = 0; stroke(128, 128, 255); // Stroke color (blue) strokeWeight (.5); // stroke weight println("in draw, n.part : " + particleRouteLength);
String[] lines = new String[particleRouteLength]; for (i = 0; i < particleRouteLength; i++) { lines[i] = particles[particleRoute[i]].x + " " + particles[particleRoute[i]].y; } saveStrings("path.txt", lines);
// loop the particles drawing a line between successive points for ( i = 0; i < (particleRouteLength - 1); ++i) { Vec2D p1 = particles[particleRoute[i]]; Vec2D p2 = particles[particleRoute[i + 1]]; line(p1.x*s, p1.y*s, p2.x*s, p2.y*s); } //Aggiungo due linee per visualizzare il punto da cui parte il disegno. Bond.
stroke(255,0,0);//Impostazioni di colore per la prima linea strokeWeight (10); point(particles[particleRoute[0]].x*s, particles[particleRoute[0]].y*s);
} </source>
Python code
TO DO
- controllare che probabilmente la variabile defaultStepInterval non viene usata da stepMotor()
- rifattorizzare l'algoritmo che calcola la velocità dei motori. Dobbiamo poter steppare contemporaneamente ma a velocità diversa i motori e entrambi devono finre la corsa insieme
release note
questa è la versione usata la sera del minimo. Produce immagini schiacciate.
code
<source lang="python">
- system parameters. Tune them following your system
PulleyRadius = 10.0 #................. pulley radius [mm] pulleyDistance = 1200.0 #............. pulley distance [mm] stepAngle = 1.8 # .................... step angle [deg] drawingScale = 0.2 #.................. drawing scale initial_position = [636, 636] fileName = "polpo.txt" defaultStepInterval = 1 # _TODO_ find some way to get this value confy
- end of system parameters.
- DO NOT EDIT BELOW THIS LINE ##########
- packages import
from time import sleep, clock import RPi.GPIO as GPIO from numpy import loadtxt, pi, sign, sqrt, subtract, median
- initialize GPIO
GPIO.cleanup() GPIO.setmode(GPIO.BOARD) GPIO.setup(7, GPIO.OUT) GPIO.setup(11, GPIO.OUT) GPIO.setup(12, GPIO.OUT) GPIO.setup(13, GPIO.OUT) GPIO.setup(15, GPIO.OUT)
- function definitions #
- getStringLenght definition
def getStringsLen(pos_xy, halfPullDist, scale):
x2 = (pos_xy[1] * scale)**2 x2b2 = ((halfPullDist - pos_xy[1]) * scale)**2 y2 = (pos_xy[0] * scale)**2 return [sqrt(x2b2+y2) , sqrt(x2+y2)]
- enable motors
def enableMotors():
print "enabling motors" # here put high pin !enable (15 on PI) GPIO.output(15, True)
- this really move the motor operating on GPIO (note: doing only once)
def stepMotor(motorId,direction):
#print "stepping motor ", motorId if motorId == 1: GPIO.output(11, direction) GPIO.output(7, True) sleep(0.0025) GPIO.output(7, False) if motorId == 2: GPIO.output(13 , direction) GPIO.output(12, True) sleep(0.0025) GPIO.output(12, False)
- moveMotor definition
def moveMotor(numStepM1, numStepM2):
# variables initialization M1Interval = defaultStepInterval # 0.5 #.............................. compute time interval for stepping motor 1 M2Interval = defaultStepInterval # 0.25 #.............................. compute time interval for stepping motor 2 # calculate requested step and direction M1reverse = sign(numStepM1) < 0 M2reverse = sign(numStepM2) < 0 M1requestedStep = abs(numStepM1) M2requestedStep = abs(numStepM2) # calculate max spent time stepping at default speed _TODO_ find a less crude way to do that M1TravelTime = M1requestedStep*defaultStepInterval M2TravelTime = M2requestedStep*defaultStepInterval RealTravelInterval = median([M1TravelTime,M2TravelTime]) print "M1 should do "+str(M1requestedStep)+" steps, M2 should do "+str(M2requestedStep)+" steps" print numStepM1 , numStepM2, M1reverse , M2reverse #initialize then...
- i = 0 #........................................ init while loop
M1steppedStep = 0 #.............................motor 1 step counter M2steppedStep = 0 #.............................motor 2 step counter
- run = True #................................... while loop run flag
clockStart = clock() # ...run
- while run:
while M1requestedStep>M1steppedStep or M2requestedStep>M2steppedStep:
- i = i +1
if M1requestedStep>M1steppedStep:
- if clock() - clockStart > RealTravelInterval * M1steppedStep:
stepMotor(1,M1reverse) M1steppedStep = M1steppedStep + 1 if M2requestedStep>M2steppedStep:
- if clock() - clockStart > RealTravelInterval * M2steppedStep:
stepMotor(2,M2reverse) M2steppedStep = M2steppedStep + 1
- if(i > 100000): run = False # this is a timeout????
- now the part that take txt files and drive motor
try:
# load path file path = loadtxt(fileName) print "file loaded"
# convert sys param r_p = PulleyRadius d_p = pulleyDistance d_p05 = d_p #* 0.5 #........ half pulley distance [mm] s_a = stepAngle * (2*pi/360) #... step angle [rad] s = drawingScale
# initialize drawing pos_init = initial_position #........................... set initial position vector (x,y) len_curr = getStringsLen(pos_init, d_p05, s) # ..... set initial string length in mm print len_curr c=0 # do the drawing for i in path:
c=c+1
pos_next = i #................................. allocate next position vector
pos_next = pos_next + initial_position
- pos_next[1] = pos_next[1]*1.51
len_next = getStringsLen(pos_next, d_p05, s) #. get next strings lengths
print pos_next, len_next, len_curr dl = subtract(len_next, len_curr) #............ get string lengths difference ds = dl/s_a #.................................. compute motor step (same step angles for both motors) RequestedStepMotor1 = round(ds[0]) # str(round(ds[0])).rstrip('0').rstrip('.') RequestedStepMotor2 = round(ds[1]) # str(round(ds[1])).rstrip('0').rstrip('.') print "Drawing to coordinate "+str(i) print "step M1:"+str(RequestedStepMotor1)+" M2:"+str(RequestedStepMotor2) if c>1: # this is to get rid of initial unwanted segment
moveMotor(RequestedStepMotor1,RequestedStepMotor2) len_curr = len_next
# print has finished! let's disable motors and free the GPIO channel GPIO.output(15, False) GPIO.cleanup()
except (KeyboardInterrupt, SystemExit):
print " exiting..." GPIO.cleanup() print "\ncleaning GPIO..." raise
except:
print "\n errori nel codice!!!"
</source>